The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon

نویسندگان

  • R A Horowitz
  • D A Agard
  • J W Sedat
  • C L Woodcock
چکیده

The three dimensional (3D) structure of chromatin fibers in sections of nuclei has been determined using electron tomography. Low temperature embedding and nucleic acid-specific staining allowed individual nucleosomes to be clearly seen, and the tomographic data collection parameters provided a reconstruction resolution of 2.5 nm. Chromatin fibers have complex 3D trajectories, with smoothly bending regions interspersed with abrupt changes in direction, and U turns. Nucleosomes are located predominantly at the fiber periphery, and linker DNA tends to project toward the fiber interior. Within the fibers, a unifying structural motif is a two nucleosome-wide ribbon that is variably bent and twisted, and in which there is little face-to-face contact between nucleosomes. It is suggested that this asymmetric 3D zig-zag of nucleosomes and linker DNA represents a basic principle of chromatin folding that is determined by the properties of the nucleosome-linker unit. This concept of chromatin fiber architecture is contrasted with helical models in which specific nucleosome-nucleosome contacts play a major role in generating a symmetrical higher order structure. The transcriptional control implications of a more open and irregular chromatin structure are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Electron Microscope Examination of Urinary Mucoprotein and Its Interaction with Influenza Virus

A hemagglutination-inhibitory mucoprotein from human urine has been studied with the electron microscope. It consists of filaments, with diameters of 40 to > 240 A, composed of smaller fibrils. In the two-dimensional projection of the electron micrographs, the single fibrils often show a zig-zag course with a periodicity of 100 to 140 A; the single branch of a zig-zag measures about 60 A in len...

متن کامل

The higher-order structure of chromatin: evidence for a helical ribbon arrangement

Both intact and nuclease-isolated chromatin fibers have been examined at different degrees of salt-induced compaction, using a variety of preparation techniques. The results suggest that the initial folding step in nucleosome packing involves the formation of a zig-zag ribbon as has been proposed by others (Thoma F., T. Koller, and A. Klug, 1979, J. Cell Biol., 83:403-427; Worcel A., S. Strogar...

متن کامل

Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy

Cryoelectron microscopy has been used to examine the three-dimensional (3-D) conformation of small oligonucleosomes from chicken erythrocyte nuclei after vitrification in solutions of differing ionic strength. From tilt pairs of micrographs, the 3-D location and orientation of the nucleosomal disks, and the paths of segments of exposed linker can be obtained. In "low-salt" conditions (5 mM NaCl...

متن کامل

Theoretical and Experimental Investigation of Optical Properties of ZnS Zig-Zag Thin Films

Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w:as char:acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were i...

متن کامل

An All-Atom Model of the Chromatin Fiber Containing Linker Histones Reveals a Versatile Structure Tuned by the Nucleosomal Repeat Length

In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 125  شماره 

صفحات  -

تاریخ انتشار 1994